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Introduction

Explicit Example of a Shimura variety:

moduli

spaces of a moduli space of ppav’s with an automorphism,

abelian

varieties with i.e. of tripleS (X7 L7 ¢)

automor-
i @ X a complex torus (X = V/T),

Bert van

Goemen @ L ample line bundle on X, which gives a principal

(joint work

with Matthias polarization (equiv: h°(L) = 1),
e @ ¢ is an automorphism of (X, L):

p: X — X, ¢(0)=0, ¢L~0L

Introduction

Ag,«: Moduli space of ppav’s with level structure
(for example, = = level n: o : Aln] — (Z/nZ)?9)
which is a Galois cover with group G of Ag:



Shimura variety as fixed point set

Explicit
moduli
spaces of
abelian
varieties with

automor- Given (X, L, ¢) and a pOint [(X, L, Q)] S Ag7>,< then

phisms

Bert van o deﬂne ¢*[()(7 L7 Oé)] = [()(7 L’ « O ¢)],
Geemen
Joint work @ you get ¢* € G, (more precisely: aoc¢*oa! € G)
Schiitt)
@ [(X,L,a)] = [(X, L, a0 ¢)] (isomorphic objects), so
introduction (X, L, )] is a fixed point for ¢* € Gin Ag..

Hence: moduli space of triples (X, L, ¢),
with level structure x,
is the fixed point locus (Ag.)?", a Shimura variety.



G-equivariant map

Explicit

moduli

spaces of

abelian

ieti ith . . . .
hahiadl Given a G-equivariant embedding

phisms

N
Bert . e e
Bert van ©: Ag« P, ©og = Myo0O,
(joint work

RS for g € G, M, € Aut(PN),

R o the image of the moduli space of triples (X, L, ¢)
with level structure * is

@((Ag7*)¢*) = e(Ag,*) NPy

where PP, is an eigenspace of M.
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beli .
variaet?e:aith TO dO.
automor- . .
phisms @ specify the triples (A, L, ¢),
Bert van .
Geemen @ specify level structure x,
(joint work
with Matthias

Schitt) e find G-equivariant map © : Ag.. — PN,

Introduction @ determine M, € Aut(PV) and its eigenspaces P,
@ find equations for ©(Ag..),
@ study the intersection ©(Ag ) N P).

@ Applications to Arithmetic and Geometry of Shimura
varieties



The Abelian varieties

Explicit

moduli ) .

sgﬁiﬁiff (Bo,Lo) = JaC(C), C: y°=x>+1
varieties with

DL Cis agenus 2 curve, By is a ppav with automorphism
phisms
zign\wlz:: ¢ : BO - 807 ¢ = ¢*Cv ¢C(X7 .y) = (vay)
(_ioint WOI‘.k
IS where C is a primitve 5-th root of unity ((Bo, Lo, ¢) is unique).
(Bo, Lo, ¢) is rigid. Consider the 4 dim ppav with
The moduli automorphism

spaces of
ppav’s

(Ao, L, dx) = (Bo x By, Lo X Lo, ¢ x ¢).

Deformation space has dimension:

dim (Deformations (Ao, L, ¢x)) = {



The level structure x=(2,4)

Explicit .
moduli Symmetric theta structure of level two, (2, 4).
spaces of
.abglian.
Kol Aga — Ag 4y — Age — Ag.
phisms -

group (z/2z)29

Bert van
Geemen
(joint work roup Gg
with Matthias g p
Schiitt)

There is a non-split exact sequence:

The moduli 0 — (2/22)29 — G — Sp(29,F2) — 0.

spaces of
ppav’s

Sp(2g,F>) is generated by transvections: for v € IFgg
ty: B39 — F59, w—s w+ E(w,V)v,

E :F39 x F5¢ — F, = 7,/2Z is the symplectic form.




The G-equivariant map © : Aj »4) — PV

Explicit

duli . . .
S The theta constants provide a natural G-equivariant map
abelian

varieties with . N __ ng

a:rt:i’::: @ . Ag7(274) —_— ]P) y N+1 == 2 .

o van Over C, the map © is induced by the map
with Mathias

Schutt Hyg — PN, T (... :0[o](7) : .. )oe(z/2z)0
The moduli with theta constants
spaces of
ppav's e[o,] Z 627rlt(m+0'/2)’r(m+0'/2)

mez9

O(Ag,(2,4)) is birationally isomorphic with Ay (2 4).
For g =2: ©(Ay24)) = P? — {30 lines}.



Determine M, € Aut(P")

Explicit

Ml Can easily find My € Aut(PV) for g € (Z/27)%9 C G.
Wil ("Heisenberg group action”)

automor-

phisms

W  For any transvection t, € Sp(2g, F») can find M;, € Aut(PV)
Geemen (M, is a linear combination of / and M,)).

(joint work
with Matthias
Schiitt) Hence can flnd Mg for any g S G
The moduli In case g = 2, Sp(zga ]FZ) = 86 (Symmetrlc grOUp).

Sl Transvections correspond to transpositions.
Can easily find element of order five h € G and
corresponding M, € Aut(P3).

Mj, has four fixed points in P® — {30 lines} = (A 2.4)),

By unicity, each fixed point is a [( By, Lo, «)] and h = ¢*.



The eigenspaces P, in P'5 of M\

Explicit

moduli Recall: (AO’ L, d)k) = (BO X Bp, Lo X Lo, ¢ 1= ¢ X gbk),

spaces of
abelian _
varieties with M¢* - Mh .
automor-

phisms There are natural identifications:

Bert van
el P = PC, P"° = P(C*@CY), ©(A) = ©(Bo) ® ©(By).
with Matthias

Schiitt)

k
M) = My, = My gpye = My ME.

sl Can thus easily find the eigenspaces PP, C P'5 of M\
Ppav's which contain ©(Ay),
. 2 k=23,
@(Ao) e Py, dim Py, = { 3 k—4

Hence ©((As,(2,4))%) is of codimension one in Py.



The equations for ©(A; 2.4))

ol Classical (even) theta constants (¢, € € (Z/27Z)9, € - ¢ = 0):
spaces of
ELGED]

varieties with 0[?]2 = Z (-1 )U'el@[a]@[o’ + €.

aut9mor—
RRSTS o€(Z/27)9

Bert van
G .
IS There are well-known relations between the even theta

with Matthias

Schiitt) constants, for example:

0000 0000 1000 1100
The moduli H 00ab] - H ‘9[10ab] - H G[OOab] - H 0[11ab = 0,
spaces of a,be(2/22)? ab ab

ppav’s

of the form ry — . — 3 — ry. Get a relation between the
squares and a polynomial F of degree 32:

0 =[] (ntrtmtn) = P(rf,...,17) = F(...,0d],...).
+,4+,+



The intersection @(A4‘(2’4)) NP,

Explicit .
moduli Take two such polynomials Fy, Fp,

spaces of
abelian

Whiuum  restrict them to the eigenspace Py, find their GCD:

automor-
phisms

Bert van

. CinP? k=23
_G_eemen A ¢Z _ . a conic !n P , 9,
with Matthias O(Ae29)™) { a degree six surface in P?  k = 4.

Schiitt)

Let Q[¢] be the quadric in P'® such that

The moduli

spaces of

QL1 N O(As ) = {O(r) : O[(r) = 0}.

The boundary lies in at least 28 + 72 = 100 such quadrics.
The conic lies inside ©((A (2,4)) %)

(so we have a compact Shimura curve). The surface
meets the boundary in 5 points (the cusps).



Covers and the Schottky-Jung relation

Explicit
moduli
spaces of
abelian Ag7(274,8) Ag,(4,8) Ag74 Ag7(274)-

varieties with

“ohisms. group (z/2zyM

Geomen Intermediate 2:1 covers of ©(Ag, (2,4)) are given by

(_ioint WOI‘.k
" Senit) 2 _ o N+1

Ye= > (1) XX (PN,
oc(Z/27)9
The moduli
f

S i.e. get modular covers branched over Q[] N ©(Ag,(2,4))-

The closure of the locus of Jacobians of genus 4 curves is:

O(Agea) N (I=0). J=2°3 0] — (Y 01P)".

viewed as polynomial of degree 16 in the X, (= O][0]).
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Geometry of the Shimura curve

The Shimura curve lies inside the Jacobi locus.
It parametrizes the genus 4 curves with automorphism

C)\: y5 = X(X_1)(X_)‘)7 1/1()(:}’) = (CX,}/),

the de Jong-Noot family. For A = 0,1 one has

J(C) =By x By, ¢ =(¢" (%)) = 5.
The Shimura curve lies in one of the quadrics Q[¢]
(each C, has a ‘vanishing even thetanull’).

The remaining 136 — 1 = 135 = 5 - 27 quadrics intersect the
curve in 12 points, corresponding to By x By (with some
level structure).



Parametrising the Shimura curve

Explicit
moduli
spaces of
abelian
varieties with

o The Shimura curve (a conic) is isomorphic to P! and

phisms

. O((Ag,2.4))%) N (U Q[4]) = {0,00,¢*, al* Yo, 4,

(joint work
with Matthias

Schiitt) where a = C3 + Cz +1.

Jacobians of some of the modular covers decompose into
products of elliptic curves with j € Q, Q(\/5).

Among the corresponding modular forms is (a twist of) a
Hilbert modular form of parallel weight two and conductor

8v/5.



The Mumford-Tate group

Explici_t L
RislMl  Another description of (A, L, ¢):

variaq;?;isaaith o A - V//\, A= Z[C]Z, V =A ®Z R,
automor-
phisms @ J: V — Visthe complex structure, J? = —/,

Bert van

cont van @ ci(l)y=E: AxN—7Z, E(x,y) = trace(xHy).

(joint work

Joint work H is skew Hermitian: {H = —H & My (Q(¢)).
Schiitt)
@ ¢.x = (xforall x e V.

Compatibility: J € SU(H)(R), SU(H) = DY,
D is a quaternion algebra with center F = Q(v/5).
FooR = RxR, +5— (v5,—V5),

D} (R) = SU(2) x SU(1,1) = SU(2) x SL(2,R).

The Shimura curve is M\Hy, T C im(D;(Z) — SL(2,R)).



Geometry of the Shimura surface

EXpliclt The Shimura surface has 5 cusps and has automorphism

moduli

spaces of group Ss (symmetric group). Equations (in a P%):

abelian
varieties with
automor-

phisms St:=X+...+Xx = 0, s3 +10s5 — 208,84 = 0.
Bert van

Seemen Singular points: 5 cusps (orbit of pg, tgt cone: xyz = 0) and

(joint work

e 24 nodes (orbit of qp), corresponding to By x By:
po:=(—4:1:1:1:1), Qo= (1:¢:¢%:¢3:¢h.

Locus of Jacobians: a curve of degree 6 - 16 = 96,

@ a curve of degree 24 (no vanishing thetanull)
parametrises y° = x3(x — 1)?(x — \).

@ 12 curves of degree three (and multipl. 2) parametrising
y® = x*(x2 + Ax + 1), hyperelliptic curves (in 10
Q[4]'s), Weierstrass equation: y? = (x° — 1)(x® — u»).



The canonical model of the Shimura surface

Explicit . . . .
RS Canonical system: quadrics in P2 passing through the 5
abelian cusps. There is an injective homomorphism S5 — Sg:
varieties with
automor-

phisms (12) — (14)(23)(56), (54321) — (26543).

Bert van
Geemen

(Jointwork Equations for the canonical model of the Shimura surface

with Matthias

ZEI) (in a P%), a complete intersection of type (3, 3):

it zotzztztzstzs, Azt ZB+ZE4Z,
and the following (alternating for Ss) cubic:
212023 — Z12p24 — 212025 + ... + 232525 — Z42575.

Ss has a unique irreducible representation on IP°, these are
the ‘unique’ cubic invariants.



Arithmetic of the Shimura surface

Explicit
moduli

spaces of Numerical invariants of the minimal model S of the surface:

abelian
varieties with

oo g=0, pg=5 K?>=9, xip=63, h''' =51, p=46.

Bert van

Geemen The Hodge structure on H? splits:

(joint work
with Matthias
Schiitt)

T=V5 dim VP9 =1, Y(p,q),

H*(8,Q) = Ta, S, { S20 — 802 dim S = .

The L-series of the Galois representation associated to V:

L(V,s) < L(Sym*H'(E),s), E: y?=x(x2+x—1),

E is an elliptic curve with conductor 20, j(E) = 16384 /5,
E is also a modular double cover of the Shimura curve.



The Shimura surface is a Hilbert modular

surface

Explicit
moduli

spaces of A Hilbert modular surface is the moduli space of abelian

beli
W surfaces B such that
automor-
phisms

Bert van End(B) X Q D Q(\/a) d > 0

Geemen
(joint work

UOETE |t is obtained as (with Q(v/d) — R x R as before):

Schiitt)

M\(Hy x Hy), T C SLy(Q(Vd)) — SLa(R) x SLo(R).

Any deformation of (Ag, L, ¢4) is isogeneous to B2, for an
abelian surface B with Q(v/5) ¢ End(B) ® Q.

Thus the Shimura surface is dominated by a Hilbert
modular surface.

Mumford Tate group:  SU(H) = SLZQ(\@).
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