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Introduction

Example of a Shimura variety:
a moduli space of ppav’s with an automorphism,
i.e. of triples (X ,L, φ):

X a complex torus (X ∼= V/Γ),
L ample line bundle on X , which gives a principal
polarization (equiv: h0(L) = 1),
φ is an automorphism of (X ,L):

φ : X
∼=−→ X , φ(0) = 0, φ∗L ∼ L.

Ag,∗: Moduli space of ppav’s with level structure ∗

(for example, ∗ = level n: α : A[n]
∼=−→ (Z/nZ)2g)

which is a Galois cover with group G of Ag :

Ag,∗ −→ Ag = Ag,∗/G.
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Shimura variety as fixed point set

Given (X ,L, φ) and a point [(X ,L, α)] ∈ Ag,∗ then

define φ∗[(X ,L, α)] = [(X ,L, α ◦ φ)],

you get φ∗ ∈ G, (more precisely: α ◦ φ∗ ◦ α−1 ∈ G)

[(X ,L, α)] = [(X ,L, α ◦ φ)] (isomorphic objects), so
[(X ,L, α)] is a fixed point for φ∗ ∈ G in Ag,∗

Hence: moduli space of triples (X ,L, φ),
with level structure ∗,
is the fixed point locus (Ag,∗)

φ∗ , a Shimura variety.
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G-equivariant map

Given a G-equivariant embedding

Θ : Ag,∗ −→ PN , Θ ◦ g = Mg ◦Θ,

for g ∈ G, Mg ∈ Aut(PN),

the image of the moduli space of triples (X ,L, φ)
with level structure ∗ is

Θ((Ag,∗)
φ∗) = Θ(Ag,∗) ∩ Pλ

where Pλ is an eigenspace of Mg .
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To do:

specify the triples (A,L, φ),

specify level structure ∗,

find G-equivariant map Θ : Ag,∗ −→ PN ,

determine Mφ∗ ∈ Aut(PN) and its eigenspaces Pλ,

find equations for Θ(Ag,∗),

study the intersection Θ(Ag,∗) ∩ Pλ.

Applications to Arithmetic and Geometry of Shimura
varieties
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Schütt)

Introduction

The moduli
spaces of
ppav’s

The Shimura
varieties
The Shimura curve

The Shimura
surface

The Abelian varieties

(B0,L0) := Jac(C), C : y2 = x5 + 1

C is a genus 2 curve, B0 is a ppav with automorphism

φ : B0 −→ B0, φ = φ∗C , φC(x , y) = (ζx , y)

where ζ is a primitve 5-th root of unity ((B0,L0, φ) is unique).
(B0,L0, φ) is rigid. Consider the 4 dim ppav with
automorphism

(A0,L, φk ) := (B0 × B0,L0 � L0, φ× φk ).

Deformation space has dimension:

dim (Deformations (A0,L, φk )) =

{
1 k = 2,3,
2 k = 4.
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The level structure ∗=(2,4)

Symmetric theta structure of level two, (2,4).

Ag,4 −→ Ag,(2,4) −→ Ag,2︸ ︷︷ ︸
group (Z/2Z)2g

−→ Ag .

︸ ︷︷ ︸
group G

There is a non-split exact sequence:

0 −→ (Z/2Z)2g −→ G −→ Sp(2g,F2) −→ 0.

Sp(2g,F2) is generated by transvections: for v ∈ F2g
2

tv : F2g
2 −→ F2g

2 , w 7−→ w + E(w , v)v ,

E : F2g
2 × F2g

2 → F2 = Z/2Z is the symplectic form.
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The G-equivariant map Θ : Ag,(2,4) −→ PN

The theta constants provide a natural G-equivariant map

Θ : Ag,(2,4) −→ PN , N + 1 = 2g .

Over C, the map Θ is induced by the map

Hg −→ PN , τ 7−→ (. . . : Θ[σ](τ) : . . .)σ∈(Z/2Z)g

with theta constants

Θ[σ](τ) =
∑

m∈Zg

e2πi t (m+σ/2)τ(m+σ/2).

Θ(Ag,(2,4)) is birationally isomorphic with Ag,(2,4).

For g = 2: Θ(A2,(2,4)) = P3 − {30 lines}.
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Determine Mg ∈ Aut(PN)

Can easily find Mg ∈ Aut(PN) for g ∈ (Z/2Z)2g ⊂ G.
(”Heisenberg group action”)

For any transvection tv ∈ Sp(2g,F2) can find Mtv ∈ Aut(PN)
(Mtv is a linear combination of I and Mv ).

Hence can find Mg for any g ∈ G.

In case g = 2, Sp(2g,F2) ∼= S6 (symmetric group).
Transvections correspond to transpositions.

Can easily find element of order five h ∈ G and
corresponding Mh ∈ Aut(P3).

Mh has four fixed points in P3 − { 30 lines} = Θ(A2,(2,4)),
By unicity, each fixed point is a [(B0,L0, α)] and h = φ∗.
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The eigenspaces Pλ in P15 of M (k)
h

Recall: (A0,L, φk ) = (B0 × B0,L0 � L0, φk := φ× φk ),
Mφ∗ = Mh.
There are natural identifications:

P3 = PC4, P15 = P(C4 ⊗ C4), Θ(A0) = Θ(B0)⊗Θ(B0).

M(k)
h := Mφ∗k

= Mφ∗×(φk )∗ = Mh ⊗Mk
h .

Can thus easily find the eigenspaces Pλ ⊂ P15 of M(k)
h

which contain Θ(A0),

Θ(A0) ∈ Pλ, dim Pλ =

{
2 k = 2,3,
3 k = 4.

Hence Θ((A4,(2,4))
φ∗k ) is of codimension one in Pλ.
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The equations for Θ(Ag,(2,4))

Classical (even) theta constants (ε, ε′ ∈ (Z/2Z)g , ε · ε′ = 0):

θ[εε′ ]
2 =

∑
σ∈(Z/2Z)g

(−1)σ·ε
′
Θ[σ]Θ[σ + ε].

There are well-known relations between the even theta
constants, for example:∏
a,b∈(Z/2Z)2

θ[0000
00ab]−

∏
a,b

θ[0000
10ab]−

∏
a,b

θ[1000
00ab]−

∏
a,b

θ[1100
11ab] = 0,

of the form r1 − r2 − r3 − r4. Get a relation between the
squares and a polynomial F of degree 32:

0 =
∏
±,±,±

(r1±r2±r3±r4) = P(r2
1 , . . . , r

2
4 ) = F (. . . ,Θ[σ], . . .).
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The intersection Θ(A4,(2,4)) ∩ Pλ

Take two such polynomials F1,F2,
restrict them to the eigenspace Pλ, find their GCD:

Θ((A4,(2,4))
φ∗k ) =

{
a conic in P2 k = 2,3,

a degree six surface in P3 k = 4.

Let Q[εε′ ] be the quadric in P15 such that

Q[εε′ ] ∩ Θ(A4,(2,4)) = {Θ(τ) : θ[εε′ ](τ) = 0 }.

The boundary lies in at least 28 + 72 = 100 such quadrics.
The conic lies inside Θ((A4,(2,4))

φ∗k )
(so we have a compact Shimura curve). The surface
meets the boundary in 5 points (the cusps).
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Covers and the Schottky-Jung relation

Ag,(2,4,8)−→Ag,(4,8) −→ Ag,4 −→ Ag,(2,4).︸ ︷︷ ︸
group (Z/2Z)M

Intermediate 2:1 covers of Θ(Ag,(2,4)) are given by

Y 2 =
∑

σ∈(Z/2Z)g

(−1)σ·ε
′
XσXσ+ε (⊂ PN+1),

i.e. get modular covers branched over Q[εε′ ] ∩Θ(Ag,(2,4)).

The closure of the locus of Jacobians of genus 4 curves is:

Θ(Ag,(2,4)) ∩ (J = 0), J = 24
∑

θ [εε′ ]
16 −

(∑
θ [εε′ ]

8
)2
,

viewed as polynomial of degree 16 in the Xσ (= Θ[σ]).
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Geometry of the Shimura curve

The Shimura curve lies inside the Jacobi locus.
It parametrizes the genus 4 curves with automorphism

Cλ : y5 = x(x − 1)(x − λ), ψ(x , y) := (ζx , y),

the de Jong-Noot family. For λ = 0,1 one has

J(Cλ) ∼= B0 × B0, ψ∗ = (φ∗, (φ2)∗) = φ∗2.

The Shimura curve lies in one of the quadrics Q[εε′ ]

(each Cλ has a ‘vanishing even thetanull’).

The remaining 136− 1 = 135 = 5 · 27 quadrics intersect the
curve in 12 points, corresponding to B0 × B0 (with some
level structure).
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Parametrising the Shimura curve

The Shimura curve (a conic) is isomorphic to P1 and

Θ((A4,(2,4))
φ∗2 ) ∩ (∪′Q[εε′ ]) = {0,∞, ζk , αζk}k=0,...,4,

where α = ζ3 + ζ2 + 1.

Jacobians of some of the modular covers decompose into
products of elliptic curves with j ∈ Q,Q(

√
5).

Among the corresponding modular forms is (a twist of) a
Hilbert modular form of parallel weight two and conductor
8
√

5.



Explicit
moduli

spaces of
abelian

varieties with
automor-
phisms

Bert van
Geemen

(joint work
with Matthias

Schütt)

Introduction

The moduli
spaces of
ppav’s

The Shimura
varieties
The Shimura curve

The Shimura
surface

The Mumford-Tate group

Another description of (A,L, φ):
A = V/Λ, Λ ∼= Z[ζ]2, V = Λ⊗Z R,
J : V → V is the complex structure, J2 = −I,
c1(L) = E : Λ× Λ→ Z, E(x , y) = trace(txHy).
H is skew Hermitian: tH = −H ∈ M2(Q(ζ)).
φ∗x = ζx for all x ∈ V .

Compatibility: J ∈ SU(H)(R), SU(H) ∼= D×1 ,
D is a quaternion algebra with center F = Q(

√
5).

F ⊗Q R ∼= R× R,
√

5 7−→ (
√

5,−
√

5),

D×1 (R) ∼= SU(2)× SU(1,1) ∼= SU(2)× SL(2,R).

The Shimura curve is Γ\H1, Γ ⊂ im (D×1 (Z)→ SL(2,R)).
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Geometry of the Shimura surface

The Shimura surface has 5 cusps and has automorphism
group S5 (symmetric group). Equations (in a P4):

s1 := x1 + . . .+ x5 = 0, s3
2 + 10s2

3 − 20s2s4 = 0.

Singular points: 5 cusps (orbit of p0, tgt cone: xyz = 0) and
24 nodes (orbit of q0), corresponding to B0 × B0:

p0 := (−4 : 1 : 1 : 1 : 1), q0 := (1 : ζ : ζ2 : ζ3 : ζ4).

Locus of Jacobians: a curve of degree 6 · 16 = 96,
a curve of degree 24 (no vanishing thetanull)
parametrises y5 = x3(x − 1)2(x − λ).
12 curves of degree three (and multipl. 2) parametrising
y5 = x4(x2 + λx + 1), hyperelliptic curves (in 10
Q[εε′ ]’s), Weierstrass equation: y2 = (x5 − 1)(x5 − µλ).
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The canonical model of the Shimura surface

Canonical system: quadrics in P3 passing through the 5
cusps. There is an injective homomorphism S5 ↪→ S6:

(1 2) 7−→ (1 4)(2 3)(5 6), (5 4 3 2 1) 7−→ (2 6 5 4 3).

Equations for the canonical model of the Shimura surface
(in a P5), a complete intersection of type (3,3):

z1 + z2 + z3 + z4 + z5 + z6, z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 ,

and the following (alternating for S5) cubic:

z1z2z3 − z1z2z4 − z1z2z5 + . . .+ z3z5z6 − z4z5z6.

S5 has a unique irreducible representation on P5, these are
the ‘unique’ cubic invariants.



Explicit
moduli

spaces of
abelian

varieties with
automor-
phisms

Bert van
Geemen

(joint work
with Matthias

Schütt)
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Arithmetic of the Shimura surface

Numerical invariants of the minimal model S̃ of the surface:

q = 0, pg = 5, K 2 = 9, χtop = 63, h1,1 = 51, ρ = 46.

The Hodge structure on H2 splits:

H2(S̃,Q) = T ⊕⊥ S,
{

T = V 5, dim V p,q = 1, ∀(p,q),
S2,0 = S0,2, dim S1,1 = ρ.

The L-series of the Galois representation associated to V :

L(V , s)
?
= L(Sym2H1(E), s), E : y2 = x(x2 + x − 1),

E is an elliptic curve with conductor 20, j(E) = 16384/5,
E is also a modular double cover of the Shimura curve.
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The Shimura surface is a Hilbert modular
surface

A Hilbert modular surface is the moduli space of abelian
surfaces B such that

End(B)⊗Q ⊃ Q(
√

d) d > 0.

It is obtained as (with Q(
√

d) ↪→ R× R as before):

Γ\(H1 ×H1), Γ ⊂ SL2(Q(
√

d)) ↪→ SL2(R)× SL2(R).

Any deformation of (A0,L, φ4) is isogeneous to B2, for an
abelian surface B with Q(

√
5) ⊂ End(B)⊗Q.

Thus the Shimura surface is dominated by a Hilbert
modular surface.

Mumford Tate group: SU(H) ∼= SL2,Q(
√

5).
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