Explicit moduli spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work
with Mathias
Schütt)

## Explicit moduli spaces of abelian varieties with automorphisms

Bert van Geemen (joint work with Matthias Schütt)

## Outline

Explicit moduli spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

Outline

## ( Introduction

## 2 The moduli spaces of ppav's

3 The Shimura varieties

- The Shimura curve
- The Shimura surface


## Introduction

Explicit
moduli
spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

Introduction
The moduli spaces of ppav's

The Shimura varieties

Example of a Shimura variety:
a moduli space of ppav's with an automorphism,
i.e. of triples $(X, L, \phi)$ :

- $X$ a complex torus $(X \cong V / \Gamma)$,
- Lample line bundle on $X$, which gives a principal polarization (equiv: $h^{0}(L)=1$ ),
- $\phi$ is an automorphism of $(X, L)$ :

$$
\phi: X \xrightarrow{\cong} X, \quad \phi(0)=0, \quad \phi^{*} L \sim L
$$

$A_{g, *}$ : Moduli space of ppav's with level structure *
(for example, $*=$ level $\left.n: \alpha: A[n] \xrightarrow{\cong}(\mathbb{Z} / n \mathbb{Z})^{2 g}\right)$
which is a Galois cover with group $G$ of $A_{g}$ :

$$
A_{g, *} \longrightarrow A_{g}=A_{g, *} / G
$$

## Shimura variety as fixed point set

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias Schütt)

Introduction
The moduli spaces of ppav's

The Shimura varieties

Given $(X, L, \phi)$ and a point $[(X, L, \alpha)] \in A_{g, *}$ then

- define $\phi^{*}[(X, L, \alpha)]=[(X, L, \alpha \circ \phi)]$,
- you get $\phi^{*} \in G, \quad$ (more precisely: $\alpha \circ \phi^{*} \circ \alpha^{-1} \in G$ )
- $[(X, L, \alpha)]=[(X, L, \alpha \circ \phi)]$ (isomorphic objects), so $[(X, L, \alpha)]$ is a fixed point for $\phi^{*} \in G$ in $A_{g, *}$

Hence: moduli space of triples $(X, L, \phi)$, with level structure $*$, is the fixed point locus $\left(A_{g, *}\right)^{\phi^{*}}$, a Shimura variety.

## G-equivariant map

Explicit
moduli
spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

Introduction
The moduli spaces of
ppav's
The Shimura varieties
The Shimura curve The Shimura surface

Given a G-equivariant embedding

$$
\Theta: A_{g, *} \longrightarrow \mathbb{P}^{N}, \quad \Theta \circ g=M_{g} \circ \Theta,
$$

for $g \in G, M_{g} \in \operatorname{Aut}\left(\mathbb{P}^{N}\right)$,
the image of the moduli space of triples $(X, L, \phi)$ with level structure $*$ is

$$
\Theta\left(\left(A_{g, *}\right)^{\phi^{*}}\right)=\Theta\left(A_{g, *}\right) \cap \mathbb{P}_{\lambda}
$$

where $\mathbb{P}_{\lambda}$ is an eigenspace of $M_{g}$.

## Outline

Explicit
moduli
spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

Introduction
The moduli
spaces of
ppav's
The Shimura varieties

To do:

- specify the triples $(A, L, \phi)$,
- specify level structure $*$,
- find G-equivariant map $\Theta: A_{g, *} \longrightarrow \mathbb{P}^{N}$,
- determine $M_{\phi^{*}} \in \operatorname{Aut}\left(\mathbb{P}^{N}\right)$ and its eigenspaces $\mathbb{P}_{\lambda}$,
- find equations for $\Theta\left(A_{g, *}\right)$,
- study the intersection $\Theta\left(A_{g, *}\right) \cap \mathbb{P}_{\lambda}$.
- Applications to Arithmetic and Geometry of Shimura varieties


## The Abelian varieties

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties

$$
\left(B_{0}, L_{0}\right):=\operatorname{Jac}(C), \quad C: \quad y^{2}=x^{5}+1
$$

$C$ is a genus 2 curve, $B_{0}$ is a ppav with automorphism

$$
\phi: B_{0} \longrightarrow B_{0}, \quad \phi=\phi_{C}^{*}, \quad \phi_{C}(x, y)=(\zeta x, y)
$$

where $\zeta$ is a primitve 5 -th root of unity $\left(\left(B_{0}, L_{0}, \phi\right)\right.$ is unique). ( $B_{0}, L_{0}, \phi$ ) is rigid. Consider the 4 dim ppav with automorphism

$$
\left(A_{0}, L, \phi_{k}\right):=\left(B_{0} \times B_{0}, L_{0} \boxtimes L_{0}, \phi \times \phi^{k}\right)
$$

Deformation space has dimension:

$$
\operatorname{dim}\left(\text { Deformations }\left(A_{0}, L, \phi_{k}\right)\right)= \begin{cases}1 & k=2,3 \\ 2 & k=4 .\end{cases}
$$

## The level structure $*=(2,4)$

Explicit moduli spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work with Mathias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties

Symmetric theta structure of level two, $(2,4)$.

$$
A_{g, 4} \longrightarrow \underbrace{\underbrace{A_{g,(2,4)} \longrightarrow A_{g, 2}}_{\text {group }(\mathbb{Z} / 2 \mathbb{Z})^{2 g}} \longrightarrow A_{g}}_{\text {group } G} .
$$

There is a non-split exact sequence:

$$
0 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{2 g} \longrightarrow G \longrightarrow \operatorname{Sp}\left(2 g, \mathbb{F}_{2}\right) \longrightarrow 0
$$

$S p\left(2 g, \mathbb{F}_{2}\right)$ is generated by transvections: for $v \in \mathbb{F}_{2}^{2 g}$

$$
t_{v}: \mathbb{F}_{2}^{2 g} \longrightarrow \mathbb{F}_{2}^{2 g}, \quad w \longmapsto w+E(w, v) v
$$

$E: \mathbb{F}_{2}^{2 g} \times \mathbb{F}_{2}^{2 g} \rightarrow \mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ is the symplectic form.

## The $G$-equivariant map $\Theta: A_{g,(2,4)} \longrightarrow \mathbb{P}^{N}$

Explicit moduli spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties

The theta constants provide a natural G-equivariant map

$$
\Theta: A_{g,(2,4)} \longrightarrow \mathbb{P}^{N}, \quad N+1=2^{g} .
$$

Over $\mathbb{C}$, the map $\Theta$ is induced by the map

$$
\mathbb{H}_{g} \longrightarrow \mathbb{P}^{N}, \quad \tau \longmapsto(\ldots: \Theta[\sigma](\tau): \ldots)_{\sigma \in(\mathbb{Z} / 2 \mathbb{Z})^{g}}
$$

with theta constants

$$
\Theta[\sigma](\tau)=\sum_{m \in \mathbb{Z}^{g}} e^{2 \pi i^{t}(m+\sigma / 2) \tau(m+\sigma / 2)}
$$

$\Theta\left(A_{g,(2,4)}\right)$ is birationally isomorphic with $A_{g,(2,4)}$.
For $g=2: \Theta\left(A_{2,(2,4)}\right)=\mathbb{P}^{3}-\{30$ lines $\}$.

## Determine $M_{g} \in \operatorname{Aut}\left(\mathbb{P}^{N}\right)$

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties

Can easily find $M_{g} \in \operatorname{Aut}\left(\mathbb{P}^{N}\right)$ for $g \in(\mathbb{Z} / 2 \mathbb{Z})^{2 g} \subset G$. ("Heisenberg group action")

For any transvection $t_{v} \in \operatorname{Sp}\left(2 g, \mathbb{F}_{2}\right)$ can find $M_{t_{v}} \in \operatorname{Aut}\left(\mathbb{P}^{N}\right)$ ( $M_{t_{v}}$ is a linear combination of $I$ and $M_{v}$ ).

Hence can find $M_{g}$ for any $g \in G$.
In case $g=2, \operatorname{Sp}\left(2 g, \mathbb{F}_{2}\right) \cong S_{6}$ (symmetric group).
Transvections correspond to transpositions.
Can easily find element of order five $h \in G$ and corresponding $M_{h} \in \operatorname{Aut}\left(\mathbb{P}^{3}\right)$.
$M_{h}$ has four fixed points in $\mathbb{P}^{3}-\{30$ lines $\}=\Theta\left(A_{2,(2,4)}\right)$,
By unicity, each fixed point is a $\left[\left(B_{0}, L_{0}, \alpha\right)\right]$ and $h=\phi^{*}$.

## The eigenspaces $\mathbb{P}_{\lambda}$ in $\mathbb{P}^{15}$ of $M_{h}^{(K)}$

Explicit moduli spaces of abelian
varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties The Shimura curve The Shimura surface

Recall: $\left(A_{0}, L, \phi_{k}\right)=\left(B_{0} \times B_{0}, L_{0} \boxtimes L_{0}, \phi_{k}:=\phi \times \phi^{k}\right)$,
$M_{\phi^{*}}=M_{h}$.
There are natural identifications:

$$
\begin{gathered}
\mathbb{P}^{3}=\mathbb{P} \mathbb{C}^{4}, \quad \mathbb{P}^{15}=\mathbb{P}\left(\mathbb{C}^{4} \otimes \mathbb{C}^{4}\right), \quad \Theta\left(A_{0}\right)=\Theta\left(B_{0}\right) \otimes \Theta\left(B_{0}\right) . \\
M_{h}^{(k)}:=M_{\phi_{k}^{*}}=M_{\phi^{*} \times\left(\phi^{k}\right)^{*}}=M_{h} \otimes M_{h}^{k} .
\end{gathered}
$$

Can thus easily find the eigenspaces $\mathbb{P}_{\lambda} \subset \mathbb{P}^{15}$ of $M_{h}^{(k)}$ which contain $\Theta\left(A_{0}\right)$,

$$
\Theta\left(A_{0}\right) \in \mathbb{P}_{\lambda}, \quad \operatorname{dim} \mathbb{P}_{\lambda}= \begin{cases}2 & k=2,3, \\ 3 & k=4 .\end{cases}
$$

Hence $\Theta\left(\left(A_{4,(2,4)}\right)^{\phi_{k}^{*}}\right)$ is of codimension one in $\mathbb{P}_{\lambda}$.

## The equations for $\Theta\left(A_{g,(2,4)}\right)$

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen (joint work with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties
The Shimura curve The Shimura surface

Classical (even) theta constants $\left(\epsilon, \epsilon^{\prime} \in(\mathbb{Z} / 2 \mathbb{Z})^{g}, \epsilon \cdot \epsilon^{\prime}=0\right)$ :

$$
\theta\left[\left[_{\epsilon^{\prime}}\right]^{2}=\sum_{\sigma \in(\mathbb{Z} / 2 \mathbb{Z})^{g}}(-1)^{\sigma \cdot \epsilon^{\prime}} \Theta[\sigma] \Theta[\sigma+\epsilon] .\right.
$$

There are well-known relations between the even theta constants, for example:

$$
\prod_{\in(\mathbb{Z} / 2 \mathbb{Z})^{2}} \theta\left[\begin{array}{l}
0000 \\
00 a b
\end{array}\right]-\prod_{a, b} \theta\left[\begin{array}{l}
0000 \\
10 a b
\end{array}\right]-\prod_{a, b} \theta\left[\begin{array}{c}
1000 \\
00 a b
\end{array}\right]-\prod_{a, b} \theta\left[\begin{array}{l}
1100 \\
11 a b
\end{array}\right]=0
$$

of the form $r_{1}-r_{2}-r_{3}-r_{4}$. Get a relation between the squares and a polynomial $F$ of degree 32 :
$0=\prod_{ \pm, \pm, \pm}\left(r_{1} \pm r_{2} \pm r_{3} \pm r_{4}\right)=P\left(r_{1}^{2}, \ldots, r_{4}^{2}\right)=F(\ldots, \Theta[\sigma], \ldots)$.

## The intersection $\Theta\left(A_{4,(2,4)}\right) \cap \mathbb{P}_{\lambda}$

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

Take two such polynomials $F_{1}, F_{2}$,
restrict them to the eigenspace $\mathbb{P}_{\lambda}$, find their GCD:

$$
\overline{\Theta\left(\left(A_{4,(2,4)}\right)^{\phi_{k}^{*}}\right)}=\left\{\begin{array}{rl}
\text { a conic in } \mathbb{P}^{2} & k=2,3, \\
\text { a degree six surface in } \mathbb{P}^{3} & k=4 .
\end{array}\right.
$$

Let $Q\left[\begin{array}{c}\epsilon \\ \epsilon_{\epsilon}\end{array}\right]$ be the quadric in $\mathbb{P}^{15}$ such that

$$
Q\left[{ }_{\epsilon^{\prime}}^{\epsilon}\right] \cap \Theta\left(A_{4,(2,4)}\right)=\left\{\Theta(\tau): \theta\left[\left[_{\epsilon^{\prime}}^{\epsilon}\right](\tau)=0\right\} .\right.
$$

The boundary lies in at least $28+72=100$ such quadrics.
The conic lies inside $\Theta\left(\left(A_{4,(2,4)}\right)^{\phi_{k}^{*}}\right)$
(so we have a compact Shimura curve). The surface meets the boundary in 5 points (the cusps).

## Covers and the Schottky-Jung relation

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties

$$
\underbrace{A_{g,(2,4,8)} \longrightarrow A_{g,(4,8)} \longrightarrow A_{g, 4} \longrightarrow A_{g,(2,4)}}_{\text {group }(\mathbb{Z} / 2 \mathbb{Z})^{M}}
$$

Intermediate $2: 1$ covers of $\Theta\left(A_{g,(2,4)}\right)$ are given by

$$
Y^{2}=\sum_{\sigma \in(\mathbb{Z} / 2 \mathbb{Z})^{g}}(-1)^{\sigma \cdot \epsilon^{\prime}} X_{\sigma} X_{\sigma+\epsilon} \quad\left(\subset \mathbb{P}^{N+1}\right),
$$

i.e. get modular covers branched over $Q\left[\begin{array}{c}\epsilon_{\epsilon^{\prime}}\end{array}\right] \cap \Theta\left(A_{g,(2,4)}\right)$.

The closure of the locus of Jacobians of genus 4 curves is:

$$
\Theta\left(A_{g,(2,4)}\right) \cap(J=0), \quad J=2^{4} \sum \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right]^{16}-\left(\sum \theta\left[{ }_{\epsilon^{\prime}}^{\epsilon}\right]^{8}\right)^{2},
$$

viewed as polynomial of degree 16 in the $X_{\sigma}(=\Theta[\sigma])$.

## Geometry of the Shimura curve

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties
The Shimura curve

The Shimura curve lies inside the Jacobi locus.
It parametrizes the genus 4 curves with automorphism

$$
C_{\lambda}: \quad y^{5}=x(x-1)(x-\lambda), \quad \psi(x, y):=(\zeta x, y)
$$

the de Jong-Noot family. For $\lambda=0,1$ one has

$$
J\left(C_{\lambda}\right) \cong B_{0} \times B_{0}, \quad \psi^{*}=\left(\phi^{*},\left(\phi^{2}\right)^{*}\right)=\phi_{2}^{*}
$$

The Shimura curve lies in one of the quadrics $Q\left[\begin{array}{c}\epsilon \\ \epsilon_{\epsilon}\end{array}\right]$
(each $C_{\lambda}$ has a 'vanishing even thetanull').
The remaining $136-1=135=5 \cdot 27$ quadrics intersect the curve in 12 points, corresponding to $B_{0} \times B_{0}$ (with some level structure).

## Parametrising the Shimura curve

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias
Schütt)

Introduction
The moduli spaces of
ppav's
The Shimura varieties
The Shimura curve

The Shimura curve (a conic) is isomorphic to $\mathbb{P}^{1}$ and

$$
\Theta\left(\left(A_{4,(2,4)}\right)^{\phi_{2}^{*}}\right) \cap\left(\cup^{\prime} Q\left[\epsilon_{\epsilon^{\prime}}^{\epsilon}\right]\right)=\left\{0, \infty, \zeta^{k}, \alpha \zeta^{k}\right\}_{k=0, \ldots, 4}
$$

where $\alpha=\zeta^{3}+\zeta^{2}+1$.
Jacobians of some of the modular covers decompose into products of elliptic curves with $j \in \mathbb{Q}, \mathbb{Q}(\sqrt{5})$.

Among the corresponding modular forms is (a twist of) a Hilbert modular form of parallel weight two and conductor $8 \sqrt{5}$.

## The Mumford-Tate group

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work
with Matthias Schütt)

## Introduction

The moduli spaces of ppav's

The Shimura varieties
The Shimura curve The Shimura surface

Another description of $(A, L, \phi)$ :

- $A=V / \Lambda, \quad \Lambda \cong \mathbb{Z}[\zeta]^{2}, \quad V=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$,
- $J: V \rightarrow V$ is the complex structure, $J^{2}=-I$,
- $c_{1}(L)=E: \Lambda \times \Lambda \rightarrow \mathbb{Z}, \quad E(x, y)=\operatorname{trace}\left({ }^{t} x H \bar{y}\right)$. $H$ is skew Hermitian: ${ }^{t} H=-\bar{H} \in M_{2}(\mathbb{Q}(\zeta))$.
- $\phi_{*} x=\zeta x$ for all $x \in V$.

Compatibility: $J \in S U(H)(\mathbb{R}), \quad S U(H) \cong D_{1}^{\times}$,
$D$ is a quaternion algebra with center $F=\mathbb{Q}(\sqrt{5})$.
$F \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \times \mathbb{R}, \quad \sqrt{5} \longmapsto(\sqrt{5},-\sqrt{5})$,

$$
D_{1}^{\times}(\mathbb{R}) \cong S U(2) \times S U(1,1) \cong S U(2) \times S L(2, \mathbb{R})
$$

The Shimura curve is $\Gamma \backslash \mathbb{H}_{1}, \quad \Gamma \subset \operatorname{im}\left(D_{1}^{\times}(\mathbb{Z}) \rightarrow S L(2, \mathbb{R})\right)$.

## Geometry of the Shimura surface

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

Introduction
The moduli
spaces of
ppav's
The Shimura varieties

The Shimura surface has 5 cusps and has automorphism group $S_{5}$ (symmetric group). Equations (in a $\mathbb{P}^{4}$ ):

$$
s_{1}:=x_{1}+\ldots+x_{5}=0, \quad s_{2}^{3}+10 s_{3}^{2}-20 s_{2} s_{4}=0
$$

Singular points: 5 cusps (orbit of $p_{0}$, tgt cone: $x y z=0$ ) and 24 nodes (orbit of $q_{0}$ ), corresponding to $B_{0} \times B_{0}$ :

$$
p_{0}:=(-4: 1: 1: 1: 1), \quad q_{0}:=\left(1: \zeta: \zeta^{2}: \zeta^{3}: \zeta^{4}\right)
$$

Locus of Jacobians: a curve of degree $6 \cdot 16=96$,

- a curve of degree 24 (no vanishing thetanull) parametrises $y^{5}=x^{3}(x-1)^{2}(x-\lambda)$.
- 12 curves of degree three (and multipl. 2) parametrising $y^{5}=x^{4}\left(x^{2}+\lambda x+1\right)$, hyperelliptic curves (in 10 $Q\left[\epsilon_{\epsilon}^{\epsilon}\right]$ 's $)$, Weierstrass equation: $y^{2}=\left(x^{5}-1\right)\left(x^{5}-\mu_{\lambda}\right)$.


## The canonical model of the Shimura surface

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

## Introduction

The moduli spaces of
ppav's
The Shimura varieties

Canonical system: quadrics in $\mathbb{P}^{3}$ passing through the 5 cusps. There is an injective homomorphism $S_{5} \hookrightarrow S_{6}$ :

$$
(12) \longmapsto(14)(23)(56), \quad(54321) \longmapsto(26543) .
$$

Equations for the canonical model of the Shimura surface (in a $\mathbb{P}^{5}$ ), a complete intersection of type (3, 3):

$$
z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}, \quad z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+z_{4}^{3}+z_{5}^{3}+z_{6}^{3}
$$

and the following (alternating for $S_{5}$ ) cubic:

$$
z_{1} z_{2} z_{3}-z_{1} z_{2} z_{4}-z_{1} z_{2} z_{5}+\ldots+z_{3} z_{5} z_{6}-z_{4} z_{5} z_{6}
$$

$S_{5}$ has a unique irreducible representation on $\mathbb{P}^{5}$, these are the 'unique' cubic invariants.

## Arithmetic of the Shimura surface

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias

Schütt)

Introduction
The moduli spaces of ppav's

The Shimura varieties

Numerical invariants of the minimal model $\tilde{S}$ of the surface:

$$
q=0, \quad p_{g}=5, \quad K^{2}=9, \quad \chi_{\text {top }}=63, \quad h^{1,1}=51, \quad \rho=46
$$

The Hodge structure on $H^{2}$ splits:

$$
H^{2}(\tilde{S}, \mathbb{Q})=T \oplus \perp S, \quad\left\{\begin{array}{l}
T=V^{5}, \operatorname{dim} V^{p, q}=1, \forall(p, q) \\
S^{2,0}=S^{0,2}, \operatorname{dim} S^{1,1}=\rho
\end{array}\right.
$$

The L-series of the Galois representation associated to $V$ :

$$
L(V, s) \stackrel{?}{=} L\left(\operatorname{Sym}^{2} H^{1}(E), s\right), \quad E: \quad y^{2}=x\left(x^{2}+x-1\right)
$$

$E$ is an elliptic curve with conductor $20, j(E)=16384 / 5$, $E$ is also a modular double cover of the Shimura curve.

## The Shimura surface is a Hilbert modular surface

Explicit moduli spaces of abelian varieties with automorphisms

Bert van
Geemen
(joint work with Matthias Schütt)

Introduction
The moduli spaces of ppav's

The Shimura varieties

A Hilbert modular surface is the moduli space of abelian surfaces $B$ such that

$$
\operatorname{End}(B) \otimes \mathbb{Q} \supset \mathbb{Q}(\sqrt{d}) \quad d>0 .
$$

It is obtained as (with $\mathbb{Q}(\sqrt{d}) \hookrightarrow \mathbb{R} \times \mathbb{R}$ as before):

$$
\Gamma \backslash\left(\mathbb{H}_{1} \times \mathbb{H}_{1}\right), \quad \Gamma \subset S L_{2}(\mathbb{Q}(\sqrt{d})) \hookrightarrow S L_{2}(\mathbb{R}) \times S L_{2}(\mathbb{R})
$$

Any deformation of $\left(A_{0}, L, \phi_{4}\right)$ is isogeneous to $B^{2}$, for an abelian surface $B$ with $\mathbb{Q}(\sqrt{5}) \subset E n d(B) \otimes \mathbb{Q}$. Thus the Shimura surface is dominated by a Hilbert modular surface.

Mumford Tate group: $\quad S U(H) \cong S L_{2, \mathbb{Q}(\sqrt{5})}$.

